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Machine learning—(ML) based approach is considered as one of the most promising techniques for Android
malware detection and has achieved high accuracy by leveraging commonly used features. In practice, most
of the ML classifications only provide a binary label to mobile users and app security analysts. However,
stakeholders are more interested in the reason why apps are classified as malicious in both academia and
industry. This belongs to the research area of interpretable ML but in a specific research domain (i.e., mobile
malware detection). Although several interpretable ML methods have been exhibited to explain the final
classification results in many cutting-edge Artificial Intelligent-based research fields, until now, there is no
study interpreting why an app is classified as malware or unveiling the domain-specific challenges.

In this article, to fill this gap, we propose a novel and interpretable ML-based approach (named XMAL)
to classify malware with high accuracy and explain the classification result meanwhile. (1) The first
classification phase of XMAL hinges multi-layer perceptron and attention mechanism and also pinpoints the
key features most related to the classification result. (2) The second interpreting phase aims at automatically
producing neural language descriptions to interpret the core malicious behaviors within apps. We evaluate
the behavior description results by leveraging a human study and an in-depth quantitative analysis.
Moreover, we further compare XMAL with the existing interpretable ML-based methods (i.e., Drebin and
LIME) to demonstrate the effectiveness of XMAL. We find that XMAL is able to reveal the malicious behaviors
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more accurately. Additionally, our experiments show that XMAL can also interpret the reason why some
samples are misclassified by ML classifiers. Our study peeks into the interpretable ML through the research
of Android malware detection and analysis.

CCS Concepts: « Computing methodologies — Classification and regression trees; « Security and
privacy — Software security engineering;
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1 INTRODUCTION

Android malicious applications (malware) have become a serious security issue as the mobile plat-
form has become increasingly popular [1]. For example, more and more app users store personal
data such as banking transactions on their mobile devices [14, 15]; consequently, hackers shift
their attention on mobile devices and try to perform malicious behaviors through Android apps.
It is not surprising that a number of approaches have been proposed for detecting Android mal-
ware. Specifically, traditional signature-based approaches [74, 76] require frequent updates of the
signature database and fail to be effective in detecting emerging malware. Behavior-based ap-
proaches [34, 57, 62, 68] also rely on the predefined malicious behaviors, which is limited by the
analysis of existing malicious samples. Dataflow-based approaches [9, 24, 33, 42] are usually used
to identify data leakage related malicious behaviors. Recently, researchers have proposed many
effective Android malware detection methods by using a plethora of machine learning (ML) algo-
rithms (e.g., KNN [6], SVM [7], Random Forest [53], and XGboost [29]) to classify and categorize
malware. In these approaches, Android permissions and API calls are the commonly-used fea-
ture types [7, 16, 18, 63], and achieved a high detection accuracy (more than 90%). Meanwhile,
researchers began to leverage deep neural networks like CNN and RNN (e.g., LSTM and GRU) to
detect Android malware [26, 27, 28, 38, 72] and promising performance has been achieved.

However, these ML-based methods only provide a binary label to mobile users and app security
analysts. In other words, these existing methods do not completely solve the problem of malware
detection, because they merely mean that the classified apps are most likely Android malware
or benign apps. In practice, in many cases, only knowing the classification results is not enough.
For example, (1) the app store needs to know exactly what malicious behaviors the apps employ,
instead of classification results, to decide whether to remove them from markets. (2) For app secu-
rity analysts, they need to identify various malware and then understand the malicious behaviors
manually with substantial effort. It is a difficult and time-consuming task to analyze a large-scale
dataset of Android malware in the wild. However, the truth is that millions of malware are clas-
sified and stored in the server. Therefore, interpreting and understanding what an ML model has
learned and how the model makes prediction can be as important as the detection accuracy, since it
can guarantee the reliability of the classification model. Additionally, the robustness of ML models
is facing the security threat of adversarial samples according to a large number of relevant research
including Android malware [12, 16, 17, 19, 37, 40]. As ML-based methods are black-box and cannot
explain how they make predictions, adversaries might fool these methods by constructing a little
perturbation to misclassify malware as benign samples more smoothly.

To solve the problems mentioned above, we first investigated the approach of interpreting ma-
licious behaviors in Drebin [7] and found that the approach localized malicious behavior from the
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trained model rather than the test sample itself. After that, we tried to explain the classification of
the malware detection using an interpretable ML method called LIME [54], but the feature results
are mismatched to the behavior, because LIME did not consider the correlation between the input
features. To take the correlation between different features into account, we find that attention
mechanism has been applied in machine translation and computer vision and achieved great suc-
cess of interpretability [8, 31, 66, 73]. Therefore, we follow this research line and propose a novel
and interpretable ML-based approach (named XMAL) to detect Android malware and interpret
how predictions are made. XMAL leverages a customized attention mechanism with a multi-layer
perceptron (MLP) model, which pinpoints the key features most related to the prediction result,
since the traditional attention mechanism cannot be used directly in Android malware detection
scenario (Section 2.3). Apart from the binary result, it also automatically generates a descriptive
explanation (i.e., a malicious behavior description) for the classification according to the key fea-
tures. Additionally, it can help to explain why some benign apps are misclassified as malware and
vice versa. We conduct comprehensive experiments to demonstrate its interpretability of Android
malware detection, and the results show that XMAL can detect Android malware effectively, with
98.35% accuracy, and can identify the malicious behaviors that are validated by a human study
through an online survey. Our quantitative analysis can also be used to demonstrate the better
performance on malware description generation of XMar. In addition, we compare the results
with the state-of-the-art techniques in the interpretability of Android malware detection scenario.
Finally, we present case studies and in-depth discussion about our approach.
In summary, we make the main contributions as follows.

e We are the first work focusing on the interpretability of Android malware detection and
analysis. We concentrate on why an Android app is classified as malware rather than the
detection accuracy only.

e We propose XMAL to interpret the malicious behaviors of Android malware, by leveraging
a customised attention mechanism with MLP.

e We conduct a human study by designing an online survey and a quantitative analysis to
validate the capability of XMAL regarding interpretability, and also provide an in-depth
comparison study with the state-of-the-art techniques to demonstrate the effectiveness of
XMAL.

e We present several case studies and an in-depth discussion to highlight the lessons learned
and the current status of interpretability of Android malware detection and analysis.

2 BACKGROUND

In this section, first we review several potential solutions for interpretability in Android malware
detection and point out their weaknesses. Second, we introduce the attention mechanism as our
work uses the concept of attention mechanism. Finally, we highlight the motivation of our work.

2.1 Potential Solutions for Interpretability in Android Malware Detection

ML technique is widely used to classify the samples into different categories, however, without
explaining the reason for the prediction results (i.e., not interpretable). Interpretable, defined by
Doshi-Velez et al. [23], is the ability to explain or present the results in understandable terms
to humans. To alleviate this problem, some general methods that are model-agnostic have been
proposed, such as LIME [54] and LEMNA [36]. However, researchers have also done some stud-
ies in areas of text categorization and image classification. For example, Arras et al. [8] tried to
demonstrate that understanding text categorization can be achieved by tracing the classification
decision back to individual words using layerwise relevance propagation, a recently developed

ACM Transactions on Software Engineering and Methodology, Vol. 30, No. 2, Article 21. Pub. date: March 2021.



21:4 B. Wu et al.

SRS T e g g

Attention |
Layer | (331 (332 |%33 34| (A3s5| o a3,n
Encoder hy hy h3 h hs | e hy
X5

2 X3 X4

Fig. 1. Attention in machine translation.

technique for explaining predictions of complex non-linear classifiers. Zhou et al. [73] proposed
a new framework called Interpretable Basis Decomposition for providing visual explanations for
image classification networks. By decomposing the input image into semantically interpretable
components, the proposed framework can quantify the contribution of each component to the
final prediction.

In Android malware detection and analysis, malware is identified by features (e.g., permissions,
intents, and API calls) extracted from the APK file. Usually, app analysts first extract dangerous
permissions and intents from AndroidManifest.xml. They utilize existing tools (e.g., DEX2JAR) to
decompile Dalvik executable (dex) files in the Android application package (apk) file to get the
source code and read the source code from the beginning to end to locate malicious code segments
that lead to malicious behaviors. Finally, they can identify malware through malicious behaviors,
which is very understandable to a human. To explain the predictions in ML, some key permissions,
APIs, intents, or code segments should be used to match certain behaviors of Android apps, which
help us understand what behaviors the Android app might perform, causing it to be classified as
malware. Therefore, to explain why an app is classified as malware, we need to find out which
features have a significant impact on the classification in ML, and whether they are indeed related
to malicious behaviors of the malware. To do that, Drebin [7] utilized the simple detection function
of linear SVM to determine the contribution of each individual feature to the classification result,
which can be used to explain the classification of Android malware. However, since Drebin actually
outputs the features with the highest weights in the ML classifier, rather than the test samples, the
feature weights of different test samples are the same, which may be inaccurate. Melis et al. [48]
proposed to leverage a gradient-based approach to identify the most influential local features. This
method essentially obtains the gradient by approximating the original complex model, and there is
inevitably a bias. In summary, there is no specific study on the interpretability of Android malware
detection and analysis to interpret their corresponding malicious behaviors so far.

2.2 Attention Mechanism

Attention mechanism is a fairly popular concept and useful tool in the deep learning (DL) com-
munity in recent years [61]. In DL, it refers to paying more attention to certain factors when
processing data. It utilizes the attention vector to estimate how much an element is related to the
target or other elements, and take the sum of their values weighted by the attention vector as the
approximation of the target.

It was first proposed by Bahdanau et al. [10] to solve the problem of incapability of remem-
bering long source sentences in neural machine translation (NMT). An attention layer is embed-
ded between the encoder layer and the decoder layer, as shown in Figure 1. The attention vector
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ci =1{ai1,ai2,ai3,ai4,...,0i ) has access to the entire input sequence, which guarantees the
ability of remembering long source sentences. More importantly, it also shows how significantly
an input element is related to the output target, and which input element is more important or has
a higher weight to generate the output.

Attention mechanism shows superiority in terms of classification and interpretability. It can help
the model assign different weights to each part of the input, extract more critical and important
information, making the model’s predictions more accurate, and make the prediction more under-
standable. For example, Xu et al. [65] proposed a method to explain why a certain word is output
by visualizing the attention weights of the image region. This is why the attention mechanism is
so popular. In this article, we make the first attempt to use and customize attention mechanism in
Android malware detection and analysis to interpret the prediction results.

2.3 Motivation of Our Work

To interpret the malware classification results, most existing interpretable ML-based methods uti-
lize linear models or simple models (e.g., decision trees and linear regression) to approximate the
original complex model [54], because these models can simply show the weight of each feature
that contributes to the classification results. However, the usage of these models to approximate
the original complex model inevitably introduces deviations. Additionally, most of these methods
do not take into account the correlation between the input features. In fact, the features used by
Android malware detection are usually highly correlated such as SmsManager.sendTextMessage
and android.permission.SEND_SMS. This leads to the inability of these methods to give a cor-
rect explanation for Android malware detection. To address these problems and challenges, we
propose a novel and effective method by using the attention mechanism with MLP for Android
malware detection. The attention mechanism estimates how strongly a feature is correlated with
other features and how important a feature is related to the prediction result. In Android malware
detection scenario, we try to customize the attention mechanism through a fully connected net-
work to learn the correlation between scalar-valued elements and assign corresponding weights
to elements, since the traditional attention mechanism is performed on elements in the form of
vectors and cannot be used directly in this case.

3 APPROACH

In this section, we first introduce the overview of our approach (named XMaL) and then the details
of each component.

3.1 Overview

As shown in Figure 2, our approach (XMAL) consists of two main components (i.e., a Classifier
and an Interpreter). (1) The classifier component extracts API calls and used permissions from
APK files as inputs and aims at accurately predicting whether an app is malware. The classifier
can also pinpoint the key input features most related to the prediction result. (2) The interpreter
component aims at automatically producing descriptions to interpret why an app is classified as
malware. The behavior descriptions are generated through the rule-based method according to
the documentation collected from Android Developers [32]. The details of each component are
elaborated in Section 3.2 and Section 3.3, respectively.

3.2 Classifier Component

In this section, we introduce how to extract the key features that have more relevance to the
classification results. The key feature extraction conducts two processes: feature extraction and
model training. We detail the two processes as below.
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Fig. 2. Overview of our approach (XMAL).

3.2.1 Feature Extraction. Usually, if an Android app exhibits malicious behaviors, then it will be
granted with the necessary permissions and call the corresponding APIs. In fact, permission and
API calls are the top two important and commonly used feature types for Android malware detec-
tion and analysis [51]. A lot of studies used these two features as significant features for classifying
Android malware, such as Drebin [7], DriodAPIMiner [6], DroidMat [63], and many other previous
studies [16, 18, 29, 38,47, 67, 70, 72]. Additionally, they contain semantics that can be used to help to
understand the behaviors of the application. Therefore, in this article, we follow the common prac-
tice and use API calls and permissions as the features to train a malware classifier. In Android sys-
tem, there are hundreds of permissions, and the number of APIs exceeds 20,000. But not all of them
are helpful in distinguishing malware. Li et al. [41] utilized three levels of pruning and found that
only 22 permissions are significant for detecting malware. Therefore, we need to employ pruning
to preserve those features that can be used to identify malware efficiently. Here we refer to Refer-
ence [16] and select 158 features (including 97 API calls and 61 permissions) for our study by using
manual statistical pruning method in Reference [16] from the original 2,114 features extracted from
the training sample set. The selected features have a high degree of discrimination for malware
classification, which is good for improving the accuracy and interpretability of the classification.
Meanwhile, since API calls and permissions have more semantics that enable people to understand
their role in the applications, using them as the features can help further interpret our model. Ad-
ditionally, our approach is general that can be extended the new feature categories to capture more
complex malicious behaviors according to new malware samples. To extract API calls and permis-
sions, we utilize Androguard [22] to extract API calls and permissions from APK file, which are
used to construct the feature vector. Here we denote a sample set by {{(x;, y;)}|x; € X,y; € Y, 1 <=
i <= M}, where X is the set of x; and Y is the set of y;, x; = (xl(l), x;z), xl@, R xEN)) is the feature
vector of the ith sample, N is the total number of features, y; € {0, 1} is the label of the ith sample
(i-e., 0 for benign, 1 for malicious), and M is the total number of samples. xlg ) represents the jth
feature of the ith sample. If the jth feature exists in the ith sample, then xl.U ) = 1; otherwise, xlg ) .

3.2.2 Customized Classification Model and Model Training. After extracting features and con-
structing a feature vector, we feed the feature vector to train the malware classifier. As shown in
Figure 2, the classifier consists of two layers: the attention layer and the MLP. The attention layer
is designed to learn weights of the features that can be regarded as relevancy scores between the
features and classification results. Then the MLP maps the features weighted by the attention layer

to the binary classification.
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Fig. 3. Attention layer in XMAL.

The traditional attention mechanism is to obtain the weight of the input feature by scoring how
well the input feature and the output match, which can be formulated as follows:

e;j = score(s;_1, hy), (1)
where s;_; is hidden state of output, and h; is the jth annotation of input. Then the feature weight
can be computed by
_explej)
X exple)
The score function will be different according to different scenarios. For instance, the score func-
tion in the paper by Luon et al. [46] is computed by

(2)

Olij

score(si—1, hj) = sL_h;, (3)

The input feature of traditional attention mechanism is generally expressed as a vector. But the
features extracted from the samples are composed of scalar values. They cannot be used to compute
the score like Equation (3). Here we customize a fully connected network and a softmax function
to implement the attention layer, as shown in Figure 3. Because a fully connected network can
capture the correlations between scalar-valued input features.

We compute how well all input features and the output at jth position match by

N
j k
egj) = le( )wkj, (4)
k=1

where wy; is a learnable parameters of the fully connected network in attention layer. egj) as the
output at jth position in the fully connected network, is a linear combination of all input features
xlgk). It can be regarded as the combination of a set of features that have different relevance to
the input feature at jth position. After the model training, the parameter wy; will be assigned
an appropriate value to show the correlation between the input feature at jth position and other
input features. Therefore, our customized attention layer has considered the correlation between
the input features when computing the weight of input features.

Here we perform a softmax function on the output of the fully connected network to obtain
the weights of input features at different positions. We denote attention vector by «;, where o; =

(agl), al@, ajl), e, aﬁ")). agj) represents the weight of jth feature in ith sample and is computed
by
o exped)
Ay R TN ©)
2o exple; )
where ai(j ) reflects the importance of the input feature at ith position in deciding classification
results.
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After generating the attention vector through the attention layer, the MLP is used to map the
features weighted by the attention vector to the binary classification. Here we denote the weighted
feature vector of the ith sample by c¢;. It is obtained by weighting the input feature vector using
the attention vector, and is computed by

Ci = a,-x,-T. (6)
In the end, the classification result can be computed by

Yi Zf(Ci), (7)

where f(-) represents the function of MLP that maps the input vector c¢; into a binary prediction
result.

When the training data are fed to train the classifier, the attention layer assigns different weights
to the corresponding features based on their relevance to the classification result. Features that
have more relevance to classification are assigned larger weights, while features with less impact
are assigned smaller weights. Other interpretable ML methods aim to obtain the weight of the fea-
ture by approximating the original complex model. Unlike them, XMAL directly obtains the weight
of the feature by embedding the attention layer in the model, therefore there is no deviation. After
feature extraction and model training, a malware classifier is generated. When a sample is input
into the classifier, the classification result and a list of features with different weights are obtained.
We remove those features that do not exist in the sample and sort the left features according to
their weights. Then we select the top n features to generate the behavior description. Here, n is a
hyperparameter. It is important to select a proper number for n. Although choosing more features
as key features may help to identify more malicious behaviors, too many features will reduce the
interpretability of classification [54]. The number for n is a heuristic value depending on concrete
scenarios. According to the experiments, the default value is configured as 6.

Our customized model utilizes a fully connected network in the attention layer to capture the
correlation between features, rather than a multi-layer fully connected network. A multi-layer
fully connected network may capture much more complex relationships between features, but it
is also difficult to understand and interpret, since it involves too many mathematical operations,
making it impossible for humans to follow the exact mapping from input feature to output. That
is one reason why we do not use CNN or RNN models. In general, the deep learning models still
cannot be interpreted accurately. How to interpret deep neural networks is an open challenge so
far, which also belongs to our future work.

3.3 Malware Description Generation

To generate malicious behavior description for Android malware, we first match the malware key
features to their corresponding semantics. We select a 158-dimensional feature vector as input to
train the classifiers. We search Android developer documentation [32] for the semantics of each
feature according to its name. The Android developer documentation has a detailed functional
description for each API and permission. We download the detailed functional description of each
feature. However, the functional descriptions include too many details and are difficult to under-
stand comprehensively. We simplify and generalize them into simple semantics by intercepting and
generalizing the key predicates, objects, and complements. For example, the functional description
of READ_CONTACTS is “Allows an application to read the user’s contacts data.” We generalize
it as “Collect contacts.” Similarly, permission. READ_CONTACTS is generalized as “Collect con-
tacts.” After that, we use the feature and the corresponding semantic to build a semantic database
(shown in Figure 4). According to our observation, some features share the same semantics. For in-
stance, URL.openconnection and URLConnection.connect share the same semantics of “Access the
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Fig. 4. Malware description generation.

Internet.” Besides, some features exhibit a similar functionality and can be combined into one se-
mantic feature. For example, permission.READ_CONTACTS and permission.READ_SMS are both
about information collection and can be combined into “Collect contact/SMS”. Therefore, we de-
note two rules as follows:

e Rule 1: If features belong to a same functionality, then they are assigned the same semantics.
e Rule 2: If features exhibit a similar functionality, then they are assigned the similar semantics
and the two similar semantics are combined into one.

In this way, we match features with semantics based on their functional descriptions so as to
obtain simple and useful semantics for features. After that, we convert the semantics into malware
descriptions to make it easier for users to understand. To generate reasonable descriptions for the
Android malware, we summarize ten basic malicious behaviors from a large number of malware,
and establish the mapping relation between the malicious behaviors and their corresponding se-
mantics. We also define some ordering rules to arrange the semantics (shown in Figure 4, ordering
rule) according to the malware behavior analysis by manual (shown in Figure 4, malware behav-
ior analysis). For example, if “activated by BOOT” exists, then it should be ranked first; if “access
the internet” and “collect IMEI” exist at the same time, then “collect IMEI” should be in front of
“Access the internet.” Therefore, when “access to the Internet,” “collect IMEL” and “Activate by
BOOT” exist simultaneously, the order should be “activated by BOOT,” “collect IMEL” and “access
the Internet.” Then they are converted into “Launch with system startup, collect info on the device,
and send it to remote server over the Internet” through the mapping relation between semantics
and malware behaviors.

Specifically, we first get a set of key features U, where k; € U is the ith key feature. Then we
converted k; into s; one by one in the phasel shown in Figure 4, where s; is the ith semantics.
According to Rule 1, if key features belong to a same functionality, then they are assigned to the
same semantics. Therefore, those semantics that exist in S are not added to S again. According
to Rule 2, if the key features exhibit a similar functionality, then their similar semantics are com-
bined into one. Therefore, when the semantics s; similar to semantic s in S appears, we combine
it with s and then update s in S. After that, we convert the semantics into descriptions one by
one in the phase2 shown in Figure 4. Figure 4 shows how the interpreter generates the malware
description step by step and how the semantic database and ordering rule are established. The
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Table 1. Detection Results of Three Models

Models Drebin MLP in LIME XMaL
Recall 94.90% 97.13% 98.28%
Precision 95.94% 96.38% 98.48%
Accuracy 95.24% 96.50% 98.35%
F-measure 95.42% 96.75% 98.37%

implementation details of the semantic database and ordering rules are provided on our web-
site: https://sites.google.com/view/xmal/.

4 EVALUATION

In this article, we aim to utilize the proposed method XMAL to explain why an app is classified
as malware. However, before interpreting the classification results, we should ensure that the de-
tection accuracy is high enough, since the malware detection accuracy is as important as the in-
terpretability results, otherwise, the interpretation is meaningless. Therefore, in this section, we
perform experiments to evaluate the malware detection accuracy and interpretability of the pro-
posed method. Additionally, we also conduct an in-depth comparison study between XMAaL and the
state-of-the-art techniques. We aim to answer the following research questions in our evaluation.

4.1 RQ1: What is the Detection Accuracy of XMAL in the Malware Classification?

In this experiment, we first investigate the Android malware detection performance of XMaL. We
adapt the best hyperparameters of XMAL for the best detection performance, and then conduct
experiments to evaluate XMAL and compare it with the state-of-the-art techniques. Finally, we
investigate whether XMAL can further be extended to the unsupervised Android applications in
the wild.

4.1.1 Dataset. To conduct the experiment, we first collect a large amount of Android malware
from two sources: 10,010 samples from the National Internet Emergency Center [2] and 5,560 sam-
ples from Drebin [7]. Most of the samples from the National Internet Emergency Center are the
recent malicious samples rather than from old datasets such as Gemome [75] in 2011. These mal-
ware samples include a variety of threats for Android, such as data leakage, phishing, trojans,
spyware, and root exploits. Apart from these malicious apps, we also fetched the top apps overall
per category from Google Play Store and HUAWEI app store on July 2019 and collect 20,193 apps
in total. We removed the ones that are classified as Android malware candidates by VirusTotal
service [5]. Finally, we obtain 20,120 benign samples in total and 15,570 malicious samples, which
are available on our website https://sites.google.com/view/xmal/.

4.1.2  Setup. To select the best hyperparameters for XMaL, we first randomly split the 15,570
Android malware samples and 20,120 benign apps into a training set (70%, i.e., 24,983 samples in
total) and a test set (30%, i.e., 10,707 samples in total). Note that these two sets have no overlap in
our experiments. After that, we extract 158-dimensional feature vectors including 97 API calls and
61 permissions from the training set to train XMAL, and utilize test set to evaluate the detection
accuracy of XMAL. Then we test different hyperparameters to XMaL and, finally, determine the
hyperparameters that can achieve the best detection performance.

To further demonstrate the superiority of XMAL, we compare it with the state-of-the-art tech-
niques and use recall, precision, accuracy, and F-measure to evaluate the detection performance. In
this experiment, we compare XMAL with Drebin [7] and LIME [54]. The reasons we select these
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Table 2. Detection Accuracy of the Top 16 Malware Families

Families TPR | Families TPR | Families TPR | Families TPR
Adrd 100% | DroidKungFu 80% | BaseBridge 100% | Geinimi  100%
DroidDream  100% | GinMaster 100% | SendPay 100% | Iconosys  100%
FakeDoc 100% | Gappusin 100% | Plankton 100% | Kmin 100%
Fakelnstaller 100% | MobileTx 100% | SMSreg 90% | Opfake 100%
y 0.9832 0.99 0.9838
w 0.98
x 09 Wog7
B08 x
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Fig. 5. Detection precision and recall under the different hyperparameters.

two methods are as follows: (1) Drebin is a model-specific interpretable method like XMaL, and
achieve a high Android malware detection accuracy of 93.90%. (2) LIME proposes an effective
model-agnostic method to interpret individual model prediction and obtain a high classification
accuracy. It is one of the most valuable methods in model interpretability and has been cited and
compared by many related research studies [36, 45, 49, 50, 55]. Comparing XMAL with LIME is
very significant for evaluating the interpretability and detection accuracy of XMAL.

In conducting a comparison experiment, we first re-implement Drebin based on its published
research paper. Since LIME is open source, we are able to reuse it directly for our experiments.
Specifically, for Drebin, we extract 422-dimensional features including API, permission, intent,
activity, service, and hardware components from the dataset, and utilize them to train and test the
model in Drebin. For LIME, since it is a model-agnostic method, we apply it to the MLP model.
We extract the same features as XMAL from the data set mentioned in the accuracy experiment to
train and test the MLP model.

Moreover, to evaluate the detection accuracy of XMAL in different malware families, we also
select the top 16 malware families with the largest number of samples (cf. Table 2) according to the
malware family tags provided by Drebin [7]. Since some malware families have too few samples to
validate the interpretable results in the next experiments, we randomly select 10 samples for each
malware family (i.e., 160 samples in total) from the test set for further investigation. In addition, to
validate the detection accuracy of XMAL in the samples from National Internet Emergency Center,
we also randomly select 10 malicious samples from the test set. Finally, 170 malicious samples are
selected to test and compare, we also randomly select 170 benign apps from the test set accordingly
to validate XMAL.

Parameter tuning for best classification performance. To achieve a better detection per-
formance, we first search for the best hyperparameters (i.e., learning rate, optimizer, activation
function, epochs, and batch_size) of XMaL. Specifically, we set the learning rate to a set of values in-
cluding 0.0001, 0.001, 0.01, and 0.1, which shows a little difference in detection performance. There-
fore, we select 0.001 as the learning rate in our experiments. Figure 5(a) demonstrates the detection
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results of applying different optimizer and activation function. As a result, “adam + softmax”
achieves the best performance overall. We further investigate the impact of epochs and batch_size.
As shown in Figure 5(b), the configuration of 10 epochs and 20 batch_size achieves the best result.

4.1.3 Results. After determining the best hyperparameters of XMaL, we use the test set (10,707
samples in total) to test XMAL, Drebin, and LIME, and compare their detection performance. The
experiment results are shown in Table 1. The result shows that the accuracy of the re-implemented
model of Drebin is 95.24%, while the original accuracy in the paper is 93.90%, indicating the
model we implemented is comparable to the original model. Note that, the accuracy of the re-
implemented model is better than the original model, because we perform the feature selection by
using manual statistical pruning used in Reference [16]. The accuracy of the three models are all
above 95%, while XMAL achieves 98.35% detection accuracy, outperforms the other two methods.
Moreover, we evaluate XMAL on the 170 benign test sample with a TNR (true negative rate) of
98.82%, which means that only 2 benign applications are misclassified as malware. We also test
XMaAL on the 170 malware samples. The true positive rate (TPR) of the 10 malware samples from
National Internet Emergency Center is 100%, and the TPR of each family is shown in Table 3. We
can see that most malware families have a TPR of 100%, while DroidKungFu and SMSreg have
TPRs of 80% and 90%, respectively, which means only two DroidKungFu malware and one SM-
Sreg malware are misclassified as benign. In summary, XMAL achieves high detection accuracy in
malware detection. To validate XMAL on unsupervised cases, we also randomly collect 1,000 An-
droid apps from several Android application markets (e.g., Google Play Store, APKpure, coolapk,
appchina, and mi.com) and employ XMAL on these samples. We find that five of them are classified
as malware. After manual analysis, we confirm that three apps! privately obtain the users’ contacts
and send them to a malicious remote server. Now they have been removed from the app stores.
The other two apps? trick users into downloading apps and collect users’ information. They still
can be found on the website http://www.appchina.com/soft and we will report accordingly.

4.2 RQ2: How well does the Malware Description Generated by XMaL Match the
Actual Malicious Behaviors of the Malware?

We aim to interpret why an app is classified as malware in this section. To answer it, we con-
duct experiments to investigate whether the malware descriptions can match the actual malicious
behavior of the malware.

4.2.1 Dataset. We perform interpretability experiments on all malicious samples (15,570 in to-
tal collected in Section 4.1.1) and generate the corresponding malware descriptions for each of
them. To evaluate whether the malware descriptions generated by XMaL match the actual ma-
licious behaviors of the malware, we use the 170 malicious samples mentioned in Section 4.1.2
to establish the ground truth. Among them, since the 10 malware samples from National Internet
Emergency Center have been analyzed before and the corresponding expert analysis has been val-
idated by the expert team, we directly employ them as the ground truth of malware description.
Note that all members of the expert team are from National Internet Emergency Center and have
engaged in malware analysis on the platform of Android and Windows for more than 3 years.
They perform malware analysis and computer forensics on a daily basis, and are good at analyz-
ing the malicious code/behaviors and identifying malware manually. For the other 160 samples
from the top 16 malware families, we collect the corresponding expert analysis reports of each

ISHA1 values: 7BA69225D0BIB0O6DCADACAG693DF58DE03228CDBE, AEDCB0B03C9193AC1F4B9CCFB31DDBAOFB7-
D9510, and AA0OA1B157EA57E753C793F68141155A5A72F0620
2SHAT1 values: 4246c467eb833805a0e7c09df0e8d72cf182bdfa and 8075a71fd8165fd1e33652fd7cd55f06b09a1697
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family from Symantec [4] and Microsoft [3]. Meanwhile, we collaborate with the experienced ex-
pert team from National Internet Emergency Center, where they manually analyze these malware
samples and provide the corresponding analysis reports. After that, we cross-validate the analysis
reports from the two different resources and obtain the final ground truth of malware descriptions.
Consequently, we can evaluate the interpretability results by comparing with the ground truth.

In addition, to further evaluate whether XMAL can explain why the benign application is mis-
classified as malicious, we also select the 170 benign apps mentioned in Section 4.1.2 to conduct
the experiments.

4.2.2  Setup. We first use XMAL to generate the malicious behavior descriptions of the 15,570
malicious samples and evaluate if the generated descriptions (170 malware samples) match with
the ground truth. In addition, to further evaluate whether XMal can explain why the benign appli-
cation is misclassified as malicious, we employ XMAL on the 170 benign samples to conduct more
experiments. However, the evaluation may be biased by our subjective opinions. To mitigate this
problem, we randomly select one sample from each malware family and conduct an online survey
to investigate the quality of the malware description generated for these samples. Moreover, we
also conduct a quantitative analysis to validate the effectiveness of XMAL.

Evaluation Metrics. The ground truth and generated malware descriptions by XMAL are unstruc-
tured text, which cannot be compared quantitatively. Inspired by Grounded Theory [21, 56], we
extract “concepts” from the ground truth and generate malware descriptions, and compute how
many “concepts” in the ground truth can be detected by XMAL and how many “concepts” in the
generated descriptions do not exist in the ground truth. Here, “concept” refers to a meta-behavior.
For instance, “Activate when the mobile device is booted up” consists of two “concepts,” “Activate,”
and “the mobile device is booted up.” Here, we let total_concepts be the total number of “concepts”
in the ground truth, detect_concepts be the number of “concepts” in the ground truth that are de-
tected by XMAL, and surplus_concepts be the number of “concepts” in the generated descriptions
that do not exist in the ground truth. To quantitatively measure the interpretability results, we
define the evaluation metric “interpretability result” (a.k.a. ir) as follows and use ir to evaluate the
generated descriptions of all malware by XMAL,

detect_concepts

recision = s 8
P detect_concepts + surplus_concept ®
detect_concepts
recall = _—p’ 9)
total_concepts
2 X precision X recall
ir = P (10)

precision + recall

As the number of detect_concepts increases, ir becomes larger. When the number of surplus_
concepts increases, ir becomes smaller. Therefore, the closer iris to 1, the better the interpretability
result. We take the Adrd in Table 5 as an example to illustrate the calculation process of ir. We
extract concepts from the ground truth and the generated description and list them in Table 3.
Specifically, “activate” vs. “launch” are the same concept. Similarly, “the mobile device is booted up”
vs. “system startup,” “access the Internet” vs. “over the Internet,” “stead some info” vs. “collect info
on the device,” and “send to remote server” vs. “send it to remote server” are also the same concept.
Consequently, we can know that detect_concepts is 5, surplus_concepts is 0, and total_concepts is 6.
So iris 0.91.

Parameter tuning for best interpretability. Before conducting the experiments, we perform
hyperparameter tuning to select a proper value for n. We first obtain 50 malware samples and
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Table 3. The “Concepts” of Adrd

Concepts

1. activate 2. the mobile device is booted up 3. access the Internet

4. download components 5. stead some info 6. send to remote server
1. launch 2. system startup 3. collect info on the device

4. send it to remote server 5. over the internet

Ground Truth

Generated Description

Table 4. The ir computed by different values of n.

n 1 2 3 4 5 6 7 8 9 10
ir | 045 | 0.67 | 0.68 | 0.75 | 0.87 | 0.92 | 0.72 | 0.69 | 0.62 | 0.58

the corresponding expert analysis reports from National Internet Emergency Center. Then, we
evaluate XMaL and calculate ir of all samples under different values of n (i.e., ranging from 1 to
10). The results are shown in Table 4. We find that when n is set to 6, the average of ir for all
samples is closest to 1, which is 0.92. Therefore, in the following experiments, n is set to 6. Note
that 6 is not the best number of features in all scenarios. Hyperparameter tunning is necessary for
different scenarios.

4.2.3 Results. We select one sample from each malware family and two samples (named
“blackgame” and “xunbaikew1”) from National Internet Emergency Center to demonstrate the
interpretability of XMAL. The interpretability results are as shown in Table 5. To illustrate how
the experimental results explain why an app is classified as malware, we take Adrd and Opfake
families as examples.

Android.Adrd is a Trojan horse in Adrd malware family that steals information from An-
droid devices. As shown in Table 5, XMAL outputs six key features (i.e., URL.openConnection,
READ_PHONE_STATE, RECEIVE_BOOT_COMPLETED, requestLocationUpdates, getRespon-
seCode, and getSubscriberld) for a sample of Adrd and generates the corresponding semantics
(i.e., “Access the Internet”, “Collect IMEI/IMSI/location”, and “Activate by BOOT”) and malicious
behavior description (i.e, “Launch with system startup, collect info on the device, and send it to re-
mote server over the internet”). The malicious behavior description generated by XMAL can clearly
explain the reason why the sample of Adrd is classified as malware. In addition, the expert analysis
of Adrd in Table 5 shows that it has the behavior of re-executing itself when the mobile device is
booted up, stealing information and sending to a remote server. This is consistent with the ma-
licious behavior description generated by XMaL, which demonstrates the effectiveness of XMAL.
Additionally, we cross-validate through three co-authors to determine whether the semantics of
the generated description by XMAL is consistent with the ground truth (i.e., Expert Analysis). We
accept the result only if all of us agree on it.

Opfake family sends SMS messages to premium-rate numbers on the Android platform. As
can be seen from Table 5, XMAL outputs four key feature (i.e., SEND_SMS, openConnection,
READ_PHONE_STATE, and getNetworkOperator) for a sample of Opfake, and generates the cor-
responding semantics (i.e., “Send SMS messages,” “Access the Internet,” and “Collect IMEI”) and
malicious behavior description (i.e., “Send SMS to premium-rate numbers, collect info on the de-
vice, and send it to a remote server over the internet”). The malicious behavior description gener-
ated by XMAL is also consistent with the expert analysis of Opfake shown in Table 5, which also
accurately explains why the sample in Opfake is classified as malware.
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Table 5. Part of the Interpretability Results of XMAL

Description Generated by

Key Features Semantics Matching XMAL Expert Analysis (Ground Truth)
URL.openConnection 1. Activate when the mobile device
READ_PHONE_STATE 1. Access the Internet Launch with system startup,  is booted up.
B RECEIVE_BOOT_COMPLETED 2. Collect IMEI/IMSI/ collect info on the device, and 2. Access the Internet and download
::’ LocationManager.requestLocationUpdates location send it to remote server over ~ components
HttpURLConnection.getResponseCode 3. Activated by BOOT the internet 3. Steal some info and send to
TelephonyManager.getSubscriberld remote server.
» SEND_SMS Launch with system startu 1. Send and receive SMS
jbgb URL.openConnection 1. Send SMS messages send SMS to Zemium—ratep > 2.Info is sent to remote server:
c§ READ_PHONE_STATE 2. Access the Internet numbers colﬁect info on the a) Subscriber ID
%2  RECEIVE_SMS 3. Collect IMEI/SMS device ar,ld send it to remote b) Device manufacturer/model
M URLConnection.connect 4. Activated by BOOT ser r,o + the internet ¢) Android OS version
RECEIVE_BOOT_COMPLETED erver over the mterne 3. Activate when the mobile starts
URL.openConnection . ST
s P .
% READ_EXTERNAL STORAGE 1. Access the Internet ‘;auzfig’i};lsy::e‘?;;%t:g o ‘s;:al senave mf‘;'ﬁly? Islfrr‘;ber’
S READ_PHONE_STATE 2. Write to external storage © - O ware 10 - » device version, operating syste
X . collect info on the device, and version, and so on.
5  URLConnection.getURL 3. Collect IMEL -
] . . send it to remote server over 2. Download files from remote
= URLConnection.connect 4. Activated by BOOT the internet " the internet
a RECEIVE_BOOT _COMPLETED e interne computer or the internet.
5 SEND_SMS
§ READ_PHONE_STATE 1. Send SMS messages Send SMS to premlum-rate 1. Send the premium SMS
% RECEIVE_SMS numbers, collect info on the )
= READ SMS 2. Collect IMEI/SMS device. k nnine in th 2. Receive commands from a remote
g - 3. Unlock phone cevice, keep running In the server
& TelephonyManager.getNetworkOperator background
WAKE_LOCK
5 URL.openConnection 1. Access the Internet Lalllmcthl W;th sy;lter; stgrtup,d 1. Post device info such as IMEIL,
Z  READ_PHONE STATE 2. Collect IMEI it T e, o IMSL and OS version.
2 RECEIVE_BOOT_COMPLETED 3. Activated by BOOT Senc 1 10 remote SEIVEr OVer 5 npownload apps/disguises as
kd R R . . 5 the Internet, send a
O NotificationManager.notify 4. Notify the info o system updates.
notification as system
g SEND_SMS . 1. Send SMS messages Send SMS to p rerfuum_rate 1. Send SMS to premium-rate num.
&  URL.openConnection numbers, collect info on the .
3 READ PHONE STATE 2. Access the Internet device. and send it to remote 2. Access info about network.
TelephonyManager.getNetworkOperator 3. Collect IMEI server over the Internet 3. Check the phone’s current state.
E URL.openConnection
§ SEND SMS 1. Access the Internet Send SMS to premlum-rate 1. Send SMS to premium-rate num.
%  RECEIVE_SMS numbers, collect info on the . L
= WRITE SMS 2. Send SMS messages device. and send it to remote 2. obtain phone num and device info
= - . 3. Collect SMS/IMEI/IMSI ’ . and upload it to the remote server.
TelephonyManager.getDeviceld server over the internet
TelephonyManager.getSubscriberld
% ) Collect contact info, and then send
é SEND_SMS ContentResolver.query 1. Send SMS messages dceoilizzt Zzgtsaecéénsf&gl}[;he SMS with the app download link to
£ READ_CONTACTS 2. Collect contact info > all contacts.
g premium-rate num

The full list can be found on our website https://sites.google.com/view/xmal/.

In addition to the two examples above, the malicious behavior descriptions of the other
samples also match the expert analysis as shown in Table 5. XMAL provides a fairly reasonable
explanation for the classification results. However, there are also some exceptions, such as a
sample of Fakelnstaller shown in Table 5. The malicious behavior description generated by XMAL
includes the behavior of sending SMS to premium-rate numbers, collecting information on the
device, and keeping running in the background, however, the expert analysis only includes the
behavior of sending the premium SMS. After manual analysis, we find that this sample indeed
has the behavior of collecting information and keeping running in the background. Another
sample is “xunbaikew1,” which collects contact information and sends SMS message with the
app download link to all contacts. XMAL captures the malicious behavior of collecting contact
information but misses the behavior of sending SMS message as sending SMS to a premium-rate
number. Actually, some key features such as SEND_SMS can be mapped to different malicious
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Table 6. Two Misclassified Benign Apps

Sample Key Features Semantics Matching

permission INTERNET
WRITE_EXTERNAL_STORAGE

1. Access the Internet

HiViewTunnel . 2. Write to external storage
URL.openConnection 3. Collect Deviceld
TelephonyManager.getDeviceld )
permission.INTERNET
URL.openConnection 1. Access the Internet

HwSpaceService WAKE_LOCK 2. Unlock phone
ContentResolver.query 3. Collect SMS/IMEI

READ PHONE_STATE

behaviors in different scenarios like sending SMS with malicious download links. XMAL may not
be able to cover all the malicious behaviors only by mapping the key features. It can be improved
by adding more other information from apps. Based on the expert analysis of the top 16 malware
families, we find that 13 malware families (except Fakelnstaller, FakeDoc, and SendPay) have
the behavior of stealing information and sending it to a remote server over the internet, and 7
malware families have the behavior of sending SMS messages. Moreover, some of the information
stolen by malware families is the same (e.g., IMEL OS version, and device ID). We can conclude
that the APIs and permissions used to perform malicious behaviors between different malware
families are similar in Drebin dataset, which is consistent with our experimental results.

As aforementioned in Section 4.1.3, two benign apps are misclassified as malware and three
malware samples are misclassified as benign. We attempt to analyze why they are misclassified
according to the interpretable results of XMAL. The two benign applications that are misclassified
are HiViewTunnel and HwSpaceService, which are internal system applications for the HUAWEI
phone. We can see in Table 6 that the two apps do use some suspicious permissions and APIs,
causing them being classified as malware. In fact, they are just built-in system apps that use sensi-
tive APIs and permissions. In this case, it is difficult for XMAL to correctly distinguish malware, as
the built-in system apps have the same features and behaviors as malware. For the three malware
samples that are misclassified, XMAL outputs no key features for all of them, which means that
XMaL does not identify any key features of these samples to classify them as malware, resulting in
malicious samples being misclassified as benign. We further manually analyze these three samples
and find that the malware APK file in SMSreg lacks the configuration file, AndroidManifest.xml,
resulting in that the app has no permission to perform malicious behaviors so as to be identified
as benign. The remaining two samples hide malicious behavior in the .so file and the asset folder,
causing their malicious behaviors to be unrecognizable, because XMAL does not analyze the .so
files and the files in the asset folder.

4.2.4  Online Survey. To alleviate the bias caused by subjective opinions, we conduct an on-
line survey to investigate the respondents’ evaluation of the interpretable results (i.e., malware
description) generated by XMAL.

Dataset. We randomly select one sample from each malware family and use the corresponding
interpretability results of these malware to design the survey.

Participant Recruitment. We recruit 33 people from industrial companies and our universities to
participate in the experiments via emails and word-of-mouth. Among the participants, 60.6% come
from industry, and the rest come from academia. Note that, 6 security analysts from the National
Internet Emergency Center also corroborate with us and help to accomplish this online survey.
They come from different countries, such as USA, UK, Germany, China, Singapore, and Australia.
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Country Distribution Occupation Distribution

Singapore
24%

Fig. 6. Country and occupation distribution of participants.

Table 7. Part of the Questions in the Survey

Questions Rating Scale (Score: 1-5)
Q1: score the following generated description of “Adrd0”.
1: Poor
Ground Truth: 9: Mareinal
1. Activate when the mobile device is booted up. ) &
3: Acceptable
2. Access the Internet and download componets 4: Good

3. Steal the following info and send to a remote server.
Generated Result:
Launch with system startup, collect info on the device
and send it to remote server over the internet.
Q2: score the following generated description of “BaseBridge0”

Part2 5: Excellent

They have a variety of occupations, ranging from Ph.D. students, post-doctoral researchers, and
professors. Figure 6 shows the country and occupation distribution of participants. Their exper-
tise includes app developers, computer security professionals, and machine learning researchers.
Among them, 20 participants have experience in malware classification, while 17 respondents have
more than 1 year of Android malware classification experience.

Experiment Procedures. We start the online survey with a brief introduction. We explain to the
participants that our task is to evaluate how well the generated malware description results match
the ground truth. Then the participants are required to provide their personal information relevant
to the survey. To quantitatively measure the quality of the generated results, we define the rating
scale as 1 to 5 where a higher score means that the generated results match the ground truth better.
The participants are required to rate the quality of the generated results by comparing them with
the ground truth of a total of 16 malware samples from 16 malware families.

There are two main tasks that participants are required to complete. Participants need to
(1) fill in their personal information in the survey, such as name, country, academia or industry,
field of work, the role at work, and their experience in Android malware classification, and so on,
and to (2) click the corresponding button in the survey to rate the generated malware descriptions
of each sample by comparing them with the ground truth. The online survey contains 26 questions
in total and takes about 20 minutes to complete. Table 7 demonstrates a part of the questions in
the survey. The survey is available on https://forms.gle/RFUmPaSE9eKfG9zm8.

Survey Results. To ensure the quality of the survey result, we excluded those surveys that take
less than 5 minutes to complete, and finally obtained 30 valid survey results. The average score of
each sample is shown in Figure 7. The average score of Kmin is 4, which means that the generated
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Fig. 7. The average score of all samples from sur- Fig. 8. The ir results of all family samples.
vey.

result of Kmin is good. Except for Gappusin, all other sampled scores are more than 3, which
means that the generated description results are acceptable. All in all, the average score of all
samples is 3.7. Therefore, we can conclude that the overall generated description result is better
than Acceptable and close to Good.

4.2.5 Quantitative Analysis. In the end, besides the human evaluation, we further conduct a
quantitative study to investigate how well the generated description matches the ground truth of
the malware. Here, we define the 10 samples from the National Internet Emergency Center as the
CERT family. The ir of interpretability results across all malware samples generated by XMAL is
shown in Figure 8. We can see that the average ir of all malware samples is 0.80, while the ir of
four families (i.e., GinMaster, Kmin, MobileTx, and CERT) is greater than 0.9. The ir of FakeInstaller
and SMSreg families is lower than others, only 0.33 and 0.58, respectively. The reason is that most
samples in Fakelnstaller and SMSreg malware families have no more than two malicious behav-
iors, but XMAL utilizes 6 key features to generate the malware description, resulting in a lot of
surplus_concepts in these two malware families. To summarize, XMAL achieves good interpretabil-
ity results for all malware families except for Fakelnstaller and SMSreg whose samples only have
no more than two malicious behaviours.

4.3 RQ3: Does XMAL Achieve a Better Interpretation than the State-of-the-art
Techniques?

In this experiment, we aim to demonstrate that XMAL can get a better interpretation than the state-
of-the-art techniques. To achieve this goal, we conduct experiments on XMaL, Drebin and LIME
under the same data set, and compare their interpretation results through quantitative analysis
and case studies.

4.3.1 Setup. In this experiment, to demonstrate the interpreting effectiveness of our XMAL,
we compare it with two state-of-the-art interpretable ML systems, Drebin [7] and LIME [54], on
the 170 malicious samples selected and used in RQ2. The reasons we choose Drebin and LIME
have been mentioned in Section 4.1.2. For Drebin, we obtain the weight of features by acquiring
the coeflicient of the liner SVM. The features with the highest weights are regarded as key features
and used to interpret the classification result. Similarly, we perform LIME on the MLP model to
obtain the feature weight of each test sample, and then select the feature with the highest weight
as the key feature and use it to explain why an app is classified as malware or benign app.

To compare the three methods, we first calculate all key features for all samples and choose 6 key
features in this comparison experiment. Note that the number of key features generated by LIME
is 6 by default. For fairness, the number of key features generated by Drebin is also set to 6. We
then obtain the corresponding semantics of the key features based on the semantic database, which
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allows us to understand the connection between the key features and the ground truth. Finally,
we compare the interpretability of these three methods based on how well the key features and
semantics match the expert analysis, and discuss the performance of the three methods based on
the key features of the three malware families generated by them.

In addition, we compare the three methods from a quantitative perspective. We extract the “con-
cepts” from the semantics of key features, and compute the detect_concepts and surplus_concepts.
total_concepts can be extracted from the ground truth of malware samples. Then we respectively
calculate the ir of the interpretation results generated by the three methods and make a compar-
ison. Moreover, we compare the total number of key features across all these malware samples
generated by the Drebin, LIME, and XMAL.

4.3.2 Results. We compare the three methods on the 170 malware samples and demonstrate
the results of five representative malware (i.e., Adrd, GinMaster, MobileTx, blackgame, and xun-
baikew1), as shown in Table 8. For the sample in Adrd, XMAL outputs the key features, among
which READ_PHONE_STATE, LocationManager.request and getSubscriberld match the behavior
of collecting confidential information (e.g., location and IMEI/IMSI), and the features, openConnec-
tion and getResponseCode, match the behavior of sending information to remote location over the
internet, the remaining feature, RECEIVE_BOOT_COMPLETED, matches the behavior of launch-
ing with system startup. By contrast, Drebin outputs the key features, among which getContent,
getDeviceld, and openConnection match the behavior of stealing information and sending it to a
remote location. However, the other features (i.e., Intent.action.MAIN, INSTALL_PACKAGES and
NotificationManager.cancel) do not match the key malicious behaviors. The key features gener-
ated by LIME include openConnection, RECEIVE_BOOT_COMPLETED, and getDeviceld, which
can match the behavior of re-executing itself when the device is booted up and collecting infor-
mation. But the remaining key features, like INSTALL_PACKAGES and ContentResolver.delete
cannot match any behaviors of Adrd.

Similarly, for blackgame, xunbaikew1, and the samples in GinMaster and MobileTx, XMAL out-
puts key features that match the malicious behavior of the corresponding sample. However, some
of the key features generated by LIME and Drebin cannot match the behaviors of blackgame, xun-
baikew1, GinMaster and MobileTx, as shown in the bold features in Table 8. For the sample in
GinMaster, the key features generated by LIME can match most of the behavior of GinMaster, but
the remaining features (i.e., NotificationManager.notify and NotificationManager.cancel) do not
match any behaviors. For the sample in MobileTx, Drebin generates some key features that match
the malicious behavior of stealing information and sending SMS messages to a premium-rate num-
ber, but the remaining features (e.g, Intent.action.MAIN and INSTALL_PACKAGES) do not match
any malicious behavior of MobileTx. Blackgame and xunbaikew1 have similar phenomena with
GinMaster and MobileTx.

For Drebin, the feature with maximum weight in Adrd, GinMaster, MobileTx, blackgame, and
xunbaikew1 is always Intent.action.MAIN, and some key features cannot reveal any malicious
behaviors. The reasons are as follows. (1) Drebin utilizes the simple detection of linear SVM to de-
termine the contribution of each individual feature to the classification and the feature weight of
the model is only related to the model, but not to the test sample. If the features exist in test sample
and the features have a large weight in the model, then they will be selected as key features. There-
fore, it makes sense that why Intent.action.MAIN is always the key feature and some key features
generated by Drebin cannot reveal the malicious behaviors. For LIME, as we can see, the key fea-
tures generated by it do not match the behaviors of malware families very well. For example, LIME
outputs the feature with maximum weight, i.e., NotificationManager.notify and NotificationMan-
ager.cancel, which do not match any malicious behaviors of GinMaster. The key features generated
by LIME may not be accurate enough to give a reasonable explanation of the classification result
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Table 8. Comparison of Three Approaches (i.e., Drebin, LIME, and XMal)
Drebin LIME XMal
Key Features: Key Features: Key Features:
Intent.action. MAIN SEND_SMS URL.openConnection

INSTALL_PACKAGES
URL.getContent
TelephonyManager.getDeviceld
URL.openConnection
NotificationManager.cancel

Adrd

Corresponding Semantics:

1.None  2.Install packege
3.Get data from the Internet 4.Collect device ID
5.Access the Internet  6.Cancel notification

URL.openConnection
RECEIVE_BOOT_COMPLETED
TelephonyManager.getDeviceld
INSTALL_PACKAGES
ContentResolver.delete

Corresponding Semantics:

1.Send SMS message  2.Access the Internet
3.Activited by BOOT 4.Collect device ID(IMEI)
5.Install packege 6.Delete URI data

READ_PHONE_STATE
RECEIVE_BOOT_COMPLETED
LocationManager.request
HttpURLConnection.getResponseCode
TelephonyManager.getSubscriberld

Corresponding Semantics:

1.Access the Internet  2.Collect phone status
3.Activited by BOOT  4.Get updated location
5.Get Http response code 6.Collect Subscriberld
ID(IMSI)

Ground Truth:1. Activate when the mobile device is booted up. 2. Access the Internet and download components. 3. Steal some info and send to remote server

Drebin
Key Features:
Intent.action. MAIN
TelephonyManager.getDeviceld
TelephonyManager.getSimSerialNumber
URL.openConnection
NotificationManager.cancel
RECEIVE_BOOT COMPLETED

GinMaster

Corresponding Semantics:

1.None 2.Collect device ID(IMEI)
3.Collect ICCID 4.Access the Internet
5.Cancel notification  6.Activited by BOOT

LIME
Key Features:
RECEIVE_BOOT_COMPLETED
TelephonyManager.getDeviceld
NotificationManager.notify
URL.openConnection
TelephonyManager.getSimSerialNumber
NotificationManager.cancel

Corresponding Semantics:

1.Activited by BOOT 2.Collect device ID(IMEI)
3.Post notification  4.Access the Internet

XMal
Key Features:
URL.openConnection
READ_PHONE_STATE
RECEIVE_BOOT COMPLETED
HttpURLConnection.getResponseCode
TelephonyManager.getSubscriberld

Corresponding Semantics:

1.Access the Internet  2.Collect phone status
3.Activited by BOOT  4.Get Http response code
5.Collect Subscriberld ID(IMSI)

Ground Truth: 1. Steal info from the device. 2. Send info to remote server. 3. The malicious service is tri

iggered when the device finishes a boot.

Drebin
Key Features:
Intent.action. MAIN
INSTALL_PACKAGES
URL.openConnection
RECEIVE_SMS
ActivityManager.restartPackage
SEND_SMS

MobileTx

Corresponding Semantics:

1.None 2.Install package
3.Get data from the Internet
5.Break other applications

4.collect SMS
6.Collect SMS

5.Collect ICCID _ 6.Cancel notification
LIME

Key Features:

SEND_SMS

TelephonyManager.getDeviceld
RECEIVE_SMS
INSTALL_PACKAGES
READ_SMS
ActivityManager.restartPackage

Corresponding Semantics:

1.Send SMS message 2.Collect device ID(IMEI)
3.Collect SMS  4.Install package
5.Collect SMS  6.Break other applications

XMal
Key Features:

SEND_SMS

URL.openConnection
READ_PHONE_STATE
TelephonyManager.getSubscriberld
HttpURLConnection.getResponseCode

Corresponding Semantics:

1.collect SMS  2.Access the Internet
3.Collect phone status  4.Collect Subscriberld
ID(IMSI)

5.Get Http response code

Ground Truth: 1. Steal info from the compromis:

ed device. 2. Send SMS 1r

to premium-rate number.

Drebin
Key Features:
Intent.action. MAIN
WifiManager.setWifiEnabled
TelephonyManager.getDeviceld
TelephonyManager.getSimSerialNumber
URL.openConnection
NotificationManager.cancel

blackgame

Corresponding Semantics:

1.None 2.Check whether wifi is enabled
3.Collect device ID(IMEI) 4.Collect ICCID
5.Access the Internet 6.Cancel notification

LIME
Key Features:
SmsManager.sendDataMessage
WifiManager.setWifiEnabled
RECEIVE_MMS
ContentResolver.delete
TelephonyManager.getNetworkOperatorName
elephonyManager.getDeviceld

Corresponding Semantics:

1.Send SMS message 2.Check whether wifi enabled
3.Collect MMS  5.Collect network operator name
4.Delete URI data  6.Collect device ID(IMEI)

XMal
Key Features:
URL.openConnection
SEND_SMS
RECEIVE_SMS
WRITE_SMS
TelephonyManager.getDeviceld
TelephonyManager.getSubscriberld

Corresponding Semantics:

1.Access the Internet  2.Send SMS message
3.Collect SMS 4. Write SMS

5.collect device ID(IMEI) 6.collect Subscriberld
ID(IMSI)

Ground Truth: 1. Send SMS message to premium-rate num. 2. Obtain phone num and device info and upload it to the remote server.

(Continued)
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Table 8. Continued
Drebin LIME XMal
Key Features: Key Features: Key Features:
—| Intent.action. MAIN SEND_SMS SEND_SMS
g ContentResolver.query ContentResolver.query ContentResolver.query
~Z| SEND_SMS RECEIVE_SMS READ_CONTACTS
"E Runtime.exec INSTALL_PACKAGES
%| READ_CONTACTS READ_SMS
PowerManager.newWakeLock ActivityManager.restartPackage
Corresponding Semantics: Corresponding Semantics: Corresponding Semantics:
1.None 2.Query URL data 3.Send SMS message | 1.Send SMS message 2.Query URL data 1.Send SMS message 2.Query URL data
4.Execute command  5.Collect contacts 3.Collect SMS 4.Install package 3.Collect contacts
6.Keep processor and screen awake 5.Collect SMS 6.Break other applications
Ground Truth: Collect contact info, and then send SMS with the app download link to all contacts.

The bold text refers to key features that cannot match the real malicious behavior. Ground Truth refers to the expert
analysis corresponding to each sample.
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Fig. 9. The irresults across all malware samples generated by Drebin, LIME, and XMAL.

in Android malware detection. (2) LIME generates a linear model to approximate the local part
of the original complex model, which makes it difficult for LIME to accurately approximate the
decision boundaries near an instance, especially in malware detection applications. For XMAL, it
generates key features that closely match the behaviors of the malware families.

We also conduct a quantitative analysis for the three methods. The ir of the interpretabil-
ity results across all these malware samples generated by Drebin, LIME, and XMAL as shown
in Figure 9. XMAL achieves the best interpretability results among the three methods across all
these malware families. LIME is better than Drebin in most malware families except for Gap-
pusin and MobileTx. XMAL obtains the largest average value of ir across all malicious families.
The total number of the key features across all malware samples generated by the three method
is shown in Figure 10. Specifically, (1) openConnection is a common key feature for all families
generated by the three methods, which indicates that most of malicious behaviors are based on
Internet for these families. (2) Drebin and LIME output the same common feature TelephonyMan-
ager.getDeviceld for all families. This feature is used to get mobile information (e.g., IMEI). XMAL
outputs READ_PHONE_STATE with the similar function as getDeviceld. (3) Similarly, SEND_SMS
is another common key feature for LIME and XMAL; however, Drebin cannot identify SEDN_SMS
for some malware families such as BaseBridge and Kmin. Both of them contain the behavior of
sending SMS. The feature RECEIVE_BOOT_COMPLETED generated by LIME and XMAL has the
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Fig. 10. Total number of key features across all malware samples generated by Drebin, LIME, and XMAL.

similar phenomenon with SEND_SMS. (4) Drebin generates two other common key features (i.e.,
Intent.action.MAIN and NotificationManager.cancel) for most families, but both of them cannot
reveal malicious behaviors, as shown in Figure 10 (green box). The similar phenomenon occurs on
LIME for the feature NotificationManager.notify, as shown in Figure 10 (red box).

In summary, Drebin generated some key features that cannot reveal malicious behaviors such
as Intent.action.MAIN. LIME has a better performance in these families, but sometimes gener-
ates some key features that are meaningless to interpret the malicious behaviors in concrete cases
(shown in Table 8). XMAL generates key features for most malware families and is able to reveal
the key malicious behaviors within apps. Therefore, XMAL achieves a better performance on in-
terpretability of Android malware detection.

5 DISCUSSION

In this section, we discuss the threats to validity, limitations of XMAL and summarize open chal-
lenges in the interpretability of Android malware detection according to our study.

5.1 Threats to Validity

Conclusion validity. Since we use the collected ground truth to validate the malware descriptions
generated by our method, the results of XMAL may differ if the ground truth is not accurate itself.
To ensure the accuracy of the ground truth, we collaborate with an experienced expert team from
National Internet Emergency Center and they manually analyze malware samples and provide the
analysis reports. We also collect the corresponding expert analysis reports of each family from
Symantec and Microsoft, and cross-validate the analysis reports from the two different resources
and obtain the final ground truth of malware descriptions.

Construct validity. We evaluate the generated results by manual comparison with the ground
truth, the results may be biased by our subjective opinions. To mitigate this issue, we randomly
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select one sample from each malware family and conduct an online survey to investigate the
quality of the generated malware description for these samples.

Internal validity. The performance of classification models depends on the training set. If the
training set is small and not representative, then the model cannot achieve a good generalization
ability. We collect 15,570 malicious samples, including all varieties of threats for Android, such
as data leakage, phishing, trojans, spyware, and root exploits. These malware samples are the
recent malicious samples rather than the old dataset such as Genome [75] in 2011. Moreover, the
performance of our method also depends on the hyperparameter configuration. It is important
to select a proper value for n. We perform hyperparameter tuning and explain the procedures in
Section 4.2.2.

External validity. Additionally, we simplify and generalize the functional descriptions into simple
semantics by intercepting and generalizing the key predicates, objects, and complements. There-
fore, semantics constitute is a threat to the external validity of the experiments. For reproducibil-
ity purpose, we release the functional descriptions and the constructed semantics on our website:
https://sites.google.com/view/xmal/.

5.2 Limitations of XMAL

We have proven the good performance of XMaL in classification accuracy and interpretability, but
it still has some limitations as follows. A malware sample can contain several different malicious
behaviors. For example, a sample in the family, Geinimi, may collect information (e.g., IMEI, lo-
cation, SMS messages, and contact) and upload them to a remote server, send SMS messages to
a premium-rate number, install or uninstall software and create a shortcut. XMAL cannot output
features that match all the malicious behaviors in the sample, because it makes predictions by
focusing on the features with the highest weights (e.g., sending SMS messages to premium-rate
number), causing it to only notice the malicious behavior of a certain part. It may be possible to
improve it by using a multi-attention mechanism, which is our future work. To mitigate this issue,
it may be helpful to use multi-attention to focus on different parts of features or different types of
features. Multi-attention [38] utilizes a multi-modal deep learning method to learn various kinds
of features, and uses multiple attentions to focus on more features and behaviors to identify more
malicious behaviors.

The work in this article is to explain why an app is classified as malware based on APIs and
permissions. Although these two features can effectively target malicious behaviors and explain
the classification result, they are not enough to explain how the entire malicious behaviors are
implemented. More features should be taken into consideration. For example, If malware at-
tempts to activate itself when the mobile device is booted up, then it first has to register an in-
tent.action. BOOT_COMPLETED intent-filter and apply for the RECEIVE_BOOT_COMPLETED
permission in AndroidManifest.xml file, and then wait to receive a RECEIVE_BOOT_COMPLETED
intent sent by the Android system to launch with system startup. In this case, Intent is a key fea-
ture to explain how malicious behaviors are implemented. Therefore, Intent should be taken into
consideration in the analysis. However, considering more features might also result in a decrease
in interpretability. When we obtain more key features, it might be more difficult to interpret the
classification results. Therefore, it is also an important task to select reasonable features and make
a tradeoff between the number of features and interpretability performance.

Moreover, a small number of advanced malware try to hide their malicious behaviors by using
native and reflective calls [30]. Our method can only analyze the APIs that access native and reflec-
tive calls to determine whether they are malicious. It is difficult to detect their malicious behaviors
when the malicious payloads are only introduced by native code. Although our method did not
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use the native and reflective calls as features, nevertheless, it can still achieve a high detection
accuracy of 98.37%. Besides, native and reflective calls do not have the developer documentations
and a detailed functional description like permissions and APIs. As a result, we cannot construct
their semantics for interpretability purpose. We therefore do not take these features into account
in the feature set.

5.3 Open Challenges in Interpretability of Malware Detection

Many open challenges exist in explaining why an app is classified as malware. (1) One of them is
a complex scenario. Some dangerous APIs and permissions may be used in benign apps for good
purposes, such as the internal system apps. It is a great challenge for approaches that are based on
features to predict and interpret. Features that are used in different scenarios may have different
purposes. For example, in Section 4.1.3, two benign apps are misclassified as malware, because they
have dangerous API calls and permissions and are considered to perform malicious behaviors. But
in fact, they are internal system apps, which own similar features and perform similar behaviors,
such as monitoring the phone status. (2) Another challenge is the malicious behaviors of current
malware become more complex. Malware may hide their behaviors through code obfuscation
[43] and evade malware detection by downloading the payload after installation. For example,
samples in fakelnstaller try to avoid analysis through code obfuscation and recompilation. The
malware author modifies its DEX file with an obfuscated version of the recompiled code and
uses anti-reverse techniques to avoid dynamic analysis and prevent malware from running in the
emulator. Even with manual analysis, it is difficult to fully understand all the malicious behaviors
of some complex malware as we need to analyze more code, API calls, permissions, or other
features to locate and explain malicious behavior. However, it seems that the current interpretable
machine learning methods only use a small portion of features to explain the malicious behaviors.
There is still a long way to go to explain why an app is classified as malware for all malicious
samples.

6 RELATED WORK
6.1 Machine Learning-based Android Malware Detection

Since the traditional malware detection methods cannot handle an increasing number of malicious
apps [13, 58], machine learning methods have become very popular and have achieved great suc-
cess in Android malware [6, 7, 16, 18, 19, 25, 29, 41, 53, 64, 70]. For example, Aafer et al. [6] proposed
to train a KNN classifier by learning relevant features extracted at APIlevel and achieved accuracy
as high as 99% with a false positive rate as low as 2.2%. Yerima et al. [70] presented a method to
detect Android malware based on Bayesian Classification models obtained from API calls, system
commands and permissions. Wu et al. [64] adopted the k-nearest neighbour classification model
that leveraged the use of data-flow APIs as classification features to detect Android malware. Li
et al. [41] utilized three levels of pruning by mining the permission data to identify the most sig-
nificant permissions and trained an SVM classifier with 22 significant permissions. Other machine
learning algorithms such as SVM [7], Random forest [53], and XGboost [29] were also used to
detect malware and have proven to be effective.

With the popularity of deep neural networks, people began to utilize the deep neural network
models for malware detection [27, 38,47, 67, 71]. Yu et al. [71] proposed to train a malware detection
model by using a representative machine learning technique, called ANN. McLaughlin et al. [47]
proposed a malware detection system that used a deep convolutional neural network to learn
the raw opcode sequence from a disassembled program. Kim et al. [38] utilized a multi-modal
deep learning method to learn various kinds of features to maximize the benefits of encompassing
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multiple feature types. Xu et al. [67] used a Long Short Term Memory on the semantic structure
of Android bytecode and applied Multi-layer Perceptron on the XML files to identify malware
efficiently and effectively. All these method focused the malware detection accuracy rather than
the malware interpretability.

6.2 Machine Learning Interpretability

People would like to interpret the machine learning models through visualization and behavior
interpreting, which is what we are going to introduce.

6.2.1 Visualization. Visualization plays an important role in interpreting the machine learning
algorithm, especially dimensionality reduction, clustering, classification and regression analysis.
Elzen et al. [59] proposed a system that provided an intuitive visual representation of attribute im-
portance within different levels of the decision tree, helping users to gain a deeper understanding
of the decision tree result. Park et al. [52] utilized a simple graphical explanation to interpret the
naive Bayesian, linear support vector machine and logistic regression classification process, and
provided visualization of the classifier decisions and visualization of the evidence for these deci-
sions. Krause et al. [39] proposed to visualize the ranking information of predictive features to help
analysts understand how predictive features are being ranked across feature selection algorithms,
cross-validation folds, and classifiers. Visualization can be used to provide an intuitive visual way
to understand machine learning algorithms, but it is a better way to understand malware through
malicious behaviors. Therefore, in this article, we try to interpret machine learning algorithms
through another way, behavior interpreting.

6.2.2 Behavior Interpreting. To interpret machine learning models itself, it is crucial to
understand how they make predictions, which we define as behavior interpreting here. Through
behavior interpreting, we can understand the relation between the input elements and models’
output. To achieve this goal, many researchers have tried to combine the elements that have
the greatest impact on predictions to explain behaviors. In 2016, Ribeiro et al. [54] proposed a
model-agnostic method called LIME. It treated the model as a black-box and then generated a
linear model to approximate the local part of the model. The authors achieved this purpose by
minimizing the expected locally-aware loss. After that, the authors tried to interpret the machine
learning result through several features with the most weight. However, because LIME assumes
that features are independent, although LIME is designed for explaining the predictions of any
classifier, it actually supports CNN to work with image classifiers, but does not well support RNN
and MLP. For malware detection, features are interrelated, which makes it difficult for LIME to ac-
curately approximate the decision boundary near an instance. In 2018, Guo W et al. [36] proposed
LEMNA, a high-fidelity explanation method that solves the problem in LIME. LEMNA utilized
fused lasso, which acts as a penalty term that manifests as a constraint imposed upon coefficients
in loss functions, to handle the feature dependency problems. Then, it integrated fused lasso into
a mixture regression model to more accurately approximate locally nonlinear decision boundaries
to support complex deep learning decision. The mixture regression model is a combination of
multiple linear regression models. This method also interpreted the model through features with
the most weight and is more fidelity than other existing methods. However, there are inevitably
deviations due to the use of linear or simple models to approximate the original complex model.
Apart from the above work, some survey papers [35, 44] also conducted studies on interpretability.
All in all, they cannot interpret models’ output accurately in Android malware detection. To solve
this problem, we propose an interpretable machine learning model with a customized attention
mechanism.
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6.3 Applications of Attention Mechanism

The attention mechanism is mainly applied to machine translation and computer vision. Bahdanau
etal. [10] first proposed to solve the problem of incapability of remembering long source sentences
in NMT. Xu et al. [65] inspired by the attention mechanism in machine translation, proposed an
attention-based model that applied the attention mechanism to images to automatically describe
the content of images. They first use a convolutional neural network to extract L feature vectors
from the image, each of which is a D-dimensional representation corresponding to a part of the
image. Then they use an LSTM decoder to consume the convolution features to produce descrip-
tive words one by one, where the weights are learned through attention. The decoder selectively
focuses on certain parts of an image by weighting a subset of all the feature vectors. The visualiza-
tion of the attention weight can indicate the regions of the image that the model pays attention to
to output a certain word. In addition, it also allows us to understand why some mistakes were made
by the model. Vaswani et al. [60] proposed a new simple network architecture, the Transformer,
based solely on the attention mechanism to perform machine translation tasks, and achieved good
performance. There are many other applications for attention mechanism, such as machine read-
ing [20], video summarization [11] and document classification [69]. Attention mechanism has
been used to accomplish many machine learning tasks and achieved great success. Therefore, we
make the first attempt to apply it in malware detection and interpret the classification results, but
the traditional attention mechanism cannot be used directly, since its elements and targets are ex-
pressed in vector form. We customize the attention mechanism through a fully connected network
to learn the correlation between scalar-valued feature elements and assign corresponding weights
to the elements.

7 CONCLUSION

In this article, we proposed a novel approach called XMAL to interpret the malicious behaviors
of Android apps by leveraging a customized attention mechanism with the MLP model. XMAL
achieved a high accuracy in Android malware detection, and output a reasonable natural language
description to interpret the malicious behaviors by leveraging the key features pinpointed by the
classification phase. Additionally, we compared XMaL with LIME and Drebin, and demonstrated
that XMAL obtained better performance in interpretability than the other two methods. Finally,
we presented an in-depth discussion to highlight the lessons learned and open-challenges in this
research field. The source code is released on the website https://github.com/wubozhi/Xmal.
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